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Natural convection between heated vertical plates 
in a horizontal magnetic field 

By J. FLETCHER OSTERLE AND FREDERICK J. YOUNG 
Carnegie Institute of Technology, Pittsburgh 13, Pennsylvania 

(Received 23 May 1961) 

The effect of viscous dissipation and applied magnetic field is investigated for 
the case of the fully developed natural convection of a fluid between two heated 
walls. When electrical and viscous dissipation is negligible, short-circuited 
Hartmann flow results. The deviation of the velocity and temperature profiles 
from those existing in Hartmann flow are presented for various Hartmann 
numbers when dissipation is not neglected. It is shown that increasing the 
applied magnetic field rapidly decreases the influence of both viscous and 
joulean dissipation on the velocity and temperature profiles. 

1. Introduction 
The problem of fully developed natural convection in a viscous fluid flowing 

between two heated vertical plates has been solved (Ostrach 1952). It is the 
purpose of this paper to investigate this problem when a uniform magnetic field 
is applied in a direction which is mutually perpendicular to the walls and the 
direction of flow. It is assumed that the fluid has a finite electrical conductivity 
and that the configuration is infinitely long in the direction of flow. The problem 
for two parallel plates heated to different temperatures has already been solved 
by Gershuni & Zhukhovitski (1958) neglecting viscous and joulean dissipation. 

The fluid in the channel is subject to a buoyancy force causing it to rise and 
a magnetic force retarding its motion. Heat is generated within the fluid by 
both viscous and joulean dissipations. The motion of the fluid is determined first 
of all by neglecting these dissipations, and then their effect on the velocity and 
temperature profiles is evaluated. It is found that the magnetic field acts to 
decrease the dissipative effects. 

2. Basic equations 
The flow geometry under investigation is as shown in figure 1. A vertical channel 

is formed by two infinitely wide parallel plates separated by a distance 2b. 
The plates are maintained at a uniform temperature TI, which exceeds the 
ambient temperature To. A uniform magnetic field B, is passed across the channel 
normal to the plates, and a viscous conducting fluid rises in the channel driven 
by buoyancy forces and retarded by magnetic forces. The flow of this fluid is 
governed by the laws of conservation of momentum and energy. Throughout 
this paper the rationalized MKS system of units is used. 
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On the assumption that the flow is fully developed, the momentum equations 
in the x- and y-directions are 

where u and p are the x-velocity and pressure of the fluid respectively, v its 
kinematic viscosity, p its density, g the gravitational constant, and Fx and Fv 
components of the magnetic body force given in this geometry by 

Fx = -jBo, 

Fu =jBx. 

(3) 

(4) 

FIGURE 1. Configuration of flow. 

In (3) and (4 ) , j  is the current in the z-direction given by Ohm’s law 

j = a(E + uBo), ( 5 )  

where a is the electrical conductivity and E the electric field. Bx is given by the 
Maxwell equation 

E x  = -pj, 
a Y  

where ,u is the permeability. If the short-circuit case is considered, E vanishes 
and insertion of (5) into (3) and (4) yields 

Fx = - ~ B ; u ,  ( 7 )  

Fu = CTB,B,U. (8) 

In fully developed flow the pressure distribution must be hydrostatic; hence 

- _  ap - -Po9, 
ax (9) 
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where p o  is the flhd density at  ambient temperature. Inserting ( 7 ) ,  (8) and (9) 
into (1) and ( Z ) ,  there results 

crB: u 
= 0, 

a Z u  
V -  + Pg(T - To) - ~ 

aY2 P 

= aBo B,u, 
aY 

where p is the expansivity of the fluid defined by 

p = - - ( - ) .  1 aP 
P aT p 

Equation (lo), valid for moderate differences between To and T,, is the desired 
momentum relationship. Equation (1 1) gives the pressure gradient across the 
channel, which will not be considered further in this paper. 

The energy equation for this flow is 

where k is the thermal conductivity of the fluid. The second and third terms on 
the left represent joulean and viscous dissipations respectively. Equation (13) 
is the desired energy relationship. 

By use of the following substitutions 

I U = vU[g/3b2(T, - To)]-', 

y = Ylb, 

8 = (T - To)/(T,- To), 

equations (10) and (13) can be placed in dimensionless form, yielding 

U"+8-MzU = 0, (15) 

(16) 

M = B O W ( P ~ ) l 4  (17) 

(18) 

8" + M2NU2 + N (  U')' = 0, 

where M is the Hartmann number, measuring the magnetic force, given by 

and N is a dimensionless number measuring the buoyancy force given by 

N = pb4g2P2(Tl - T0)/(kv). 

The primes in (15) and (16) denote differentiation with respect to Y .  
Equations (15) and (16) contain two unknowns, U and 8, and must be solved 

simultaneously to yield the desired velocity and temperature profiles. The 
boundary conditions on these equations are as follows: 

I U(1) = 0, 8(l) = 1;  

U'(0) = 0, O'(0) = 0. 
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3. Solution 
Due to their non-linearity, equations (15) and (16) are difficult to solve. How- 

ever, the solution to a useful limiting case is readily obtainable. Allowing N to 
vanish is equivalent to neglecting dissipative heating, and in this case the 
equations become linear and have the following solutions 

U, = (1 - sech M cosh M Y ) / M 2 ,  (20) 

eo= 1, (21) 

where the zero subscript indicates that N has been set equal to zero. It can be 
shown that although N is not zero in practical problems, it is indeed small, 
which suggests the use of a perturbation technique for the solution of (15) and (1  6). 

Eliminating 8 between (15) and (16), there results 

UiV-M2U” = N[(U1)2+M2U2].  ( 2 2 )  

Now let u = U,+$N, (23) 

where the second term on the right-hand side is a correction to U,, accounting 
for an N small but not zero. Substituting (23) into (22 ) ,  noting that U, is the 
complimentary solution to ( 2 2 ) ,  and neglecting terms in N to powers greater 
than unity, there results the following equation for $1 

$‘V - M2$” = ( Ui)2  + M2UgZ. (24) 

This equation is readily solvable, yielding 

$ = [ (M tanh M - Q cosh 2M sech2 M + 3) sech M cosh M Y 

x &(cosh 2M Y sech2 M )  - +Mz Y 2  - M Y  sinh M Y sech M 

+ +M2 - 3 + i(cosh 2M sech2 M)] /M6.  (25) 

8 = O,+€N, (26) 

With $ now determined, equation (23) can be substituted into (15) to obtain 8. 
Writing 8 in the form 

there results 

E = [ - (cosh 2MY sech2M)/(4M2) + 2(coshMY sechM)/MZ 

-+Y+*-2/M2+(cosh2M sechZM)/(4M2)]/M2. (27) 

Equations (23) and (26) together with (25) and (27) represent the perturbation 
solutions for the velocity and temperature profiles, valid for sufficiently small N .  

In  the limiting case of zero Hartmann number, equations (25) and (27) 
reduce to $ = h ( 1 4 -  15Y2+ Y6), (28) 

€ = &(1- Y4). (29) 

4. Results 
The velocity and temperature profiles for the case of vanishingly small N are 

given by (20) and (21). The effect of N on the velocity and temperature is in- 
dicated by (23) and (26), with $ and e given by (25) and (27) respectively. 
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Equations (25) and (27) are plotted in figures 2 and 3 respectively for various 
values of the Hartmann number. In  figure 4, the values of 9 and E on the centre- 
line are plotted against the Hartmann number. The interesting feature of these 
results is that both 9 and E decrease rather rapidly with increasing M ,  indicating 
that an increase in field acts to decrease the effect of dissipation heating on the 

I I 1 I 
M -  0 

I I I I 

Normalized distance Y 

0 0.2 0.4 0.6 0.8 D 

FIGIJFLE 2. Velocity correction profiles for various Hartmann numbers. 

velocity and temperature profiles. In  other words, any increase in joulean dissi- 
pation accompanying an increase in field is more than overcome by the corre- 
sponding decrease in viscous dissipation. This decrease in viscous dissipation 
is due to the fact that the magnetic field tends to flatten the velocity profile as 
well as decrease the flow. From (20) it follows that the dimensionless half-channel 
flow rate defined by 

Q0 =J-luoaY 0 (30) 

for the case in which dissipations are neglected is given by 

Q0 = ( M -  tanh M ) / M 3 ,  (31) 

which is seen to decrease with Hartmann number as expected, 
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FIGURE 3. Temperature correction profiles for various Hartmann numbers. 
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FIGURE 4. Mid-channel velocity and temperature corrections v8 Hartmann number. 
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5. Numerical example 
Considering the fluid to be mercury, we find that (18) yields the following 

expression for N as a function of the channel half-width and the temperature 
difference between ambient and the wall: 

N = 4 104b4(q- TJ, (32) 

where b is in metres and the temperatures in deg.C. For a channel half-width 
of 2 cm. and a temperature difference of 20 deg. C., N becomes 0.128. The maxi- 
mum effect of dissipation is felt when the field is zero. For this case, $ an& E are 
given by (28) and (29). In  this example the results are that the mid-channel 
values of U and 8 are both increased about 1 yo by dissipation, which in this case 
is all viscous. With an applied magnetic field the dissipative effects are less. 
For example, the 1 yo increase in the mid-channel value of B due to dissipation 
is reduced by a factor of 10 at a Hartmann number of 7.5, as can be seen directly 
from figure 4. 

Since the writing of this paper, another pertinent reference has appeared in 
the literature (Poots 1961). In  this work the open-circuited case has been 
treated. Our work is concerned with the short-circuited case. 

This work was supported in part by a grant from the National Science 
Foundation. 
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